skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Prakash, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices. 
    more » « less
  2. Derivation of partial charges in small and large scale molecular systems is important for modeling of various experimental and theoretical properties like dipole moments, auto-correlation functions, charge disparity, understanding of dispersion, benchmark of classical MD simulations and electrostatic potential energy surface mapping. A correspondence between theoretical calculations (based on single/small number of molecules) is usually established with macroscopic IR/Raman spectra or dipole moment measurements. Such comparisons are indirect and lack a fine mapping of electrostatic potential from theory to experiment. In a new approach developed as the experimental part of this work, partial charges are calculated from crystallographic model refinement. The experimental method exhibits a satisfactory correspondence with partial charges obtained using quantum chemistry calculations. Particularly, gas phase partial charges from CHELPG method and condensed phase Lowdin charges correlate well and validate this experimental method. 
    more » « less